Predicting simulation parameters of biological systems using a Gaussian process model
نویسندگان
چکیده
منابع مشابه
Predicting simulation parameters of biological systems using a Gaussian process model
Finding optimal parameters for simulating biological systems is usually a very difficult and expensive task in systems biology. Brute force searching is infeasible in practice because of the huge (often infinite) search space. In this article, we propose predicting the parameters efficiently by learning the relationship between system outputs and parameters using regression. However, the conven...
متن کاملPredicting Extrusion Process Parameters Using Neural Networks
The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such...
متن کاملThe Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression
We extend the concept of the correlated knowledge-gradient policy for ranking and selection of a finite set of alternatives to the case of continuous decision variables. We propose an approximate knowledge gradient for problems with continuous decision variables in the context of a Gaussian process regression model in a Bayesian setting, along with an algorithm to maximize the approximate knowl...
متن کاملPredicting lipophilicity of drug-discovery molecules using Gaussian process models.
Many drug failures are due to an unfavorable ADMET profile (Absorption, Distribution, Metabolism, Excretion & Toxicity). Lipophilicity is intimately connected with ADMET and in today’s drug discovery process, the octanol water partition coefficient log P and it’s pH dependant counterpart log D have to be taken into account early on in lead discovery. Commercial tools available for ’in silico’ p...
متن کاملPrediction of Mechanical Lung Parameters Using Gaussian Process Models
Mechanical ventilation can cause severe lung damage by inadequate adjustment of the ventilator. We introduce a Machine Learning approach to predict the pressure-dependent, non-linear lung compliance, a crucial parameter to estimate lung protective ventilation settings. Features were extracted by fitting a generally accepted lumped parameter model to time series data obtained from ARDS (adult re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Analysis and Data Mining
سال: 2012
ISSN: 1932-1864
DOI: 10.1002/sam.11163